Animal farming has traditionally fulfilled human nutritional requirements for protein, but insects may serve as an alternative for direct human consumption in the future. Researchers at WVU's Davis College of Agriculture, Natural Resources and Design are working to lay a foundation to develop efficient protein isolation techniques. (WVU Photo)

WVU researchers determine nutritional properties of protein in cricket, locust and silkworm pupae insect powders

MORGANTOWN — As the human population grows to a predicted 10 billion by 2050 and overall land mass remains constant, traditional animal farming may become a less viable method for food production.

Animal farming has traditionally fulfilled human nutritional requirements for protein, but insects may serve as an alternative for direct human consumption in the future.

Jacek Jaczynski, professor of food science and muscle food safety in West Virginia University’s Davis College of Agriculture, Natural Resources and DesignYong-Lak Park, professor of entomology, and Kristen Matak, professor of animal and nutritional sciences, determined the nutritional and functional properties of protein for cricket, locust and silk worm pupae powders, therefore laying a foundation to develop efficient protein isolation techniques. Their findings are published in LWT.

“We have a patent on a protein isolation procedure,” Jaczynski said. “We use our patented technique to isolate protein and then we also learn about properties of isolated protein and how it can be potentially used in food for human consumption.”

Protein isolation is a process that allows purification and up-concentration of protein from various sources, according to Jaczynski.

“For example, milk contains water, fat, carbohydrates, vitamins, minerals and various proteins such as casein and whey,” Jaczynski said. “Whey protein can be selectively isolated by various isolation processes, which remove water, fat, carbohydrates, etcetera. This process results in whey protein isolate or purified and up-concentrated protein.”

Whey protein isolate is a very common food additive that results in, for example, foods with boosted protein content. In Jaczynski, Park and Matak’s project, they isolate protein such as muscle protein from insects.

Jaczynski and Matak said that as the human population grows, there needs to be an alternative protein option available.

“I think overall, we have a good handle on carbohydrates, but protein is always behind,” Jaczynski said. “That’s why we target protein from those alternative sources like insects to hopefully contribute to less hunger, malnutrition and difficult societal issues.”

“The global demand for sustainable sources of protein has created a shift from traditional sources like meat to other sources that were otherwise overlooked,” Matak said. “Edible insects and insect flours are promising as meat alternatives because they are typically rich in protein and contain all of the essential amino acids.”

To make eating the insects more appealing, researchers suggest turning the insect into powder. This method is similar to how humans process gains into flour to make it more edible.

Essentially, insect powders are dried and powdered insects and are similar to grain flours or plant-derived powders.

Although insect powders are a simple and convenient processing method to increase shelf life, the original composition likely limits their applications in food products, which could result in low consumer acceptability, according to Jaczynski, Park and Matak.

Park said insect powders are currently commercially available and can be found in granola bars, tofu and burgers.

The practice of eating terrestrial insects is widely accepted throughout most of the world. However, in Western cultures, chowing down on insects is viewed in a negative light.

Despite this, most edible terrestrial insects are seemingly cleaner than crabs, lobsters and shrimp, because they feed on fresh plants and wood instead of carrion.

Jaczynski said that 80% of the global human population already consumes insects, and that Western cultures make up the 20% that do not.

“It’s a minority that doesn’t consume insects,” Jaczynski said. “As the population grows, we’ll have to feed everyone. I don’t say insects will replace our farm animals, but it’s another alternative that seems more sustainable than what we currently do.”

For example, insect protein can be harvested much faster than a cow or pig and would require less land and water usage as well. Insects also have a short lifespan, rapidly reproduce, and require simple and minimal habitat and nutritional requirements.

According to Jaczynski and Park, the harvest cycle for insects is generally 45 days, which is far shorter than four to 36 months for traditional farm animals.

A specific type of grasshopper was even shown to produce the same proteins that are in pigs and cows called actin and myosin.

There are over 2,000 species of insects that have been identified as safe for human consumption, but some species have been more commonly explored than others, Park said.

“Mealworm and crickets are popular because they’re very easy to mass produce,” Park said. “So, when we produce insects as human food and animal feed, it should be very easy to mass produce, otherwise it does not justify the cost.”

Park added that in some Asian countries, people will consume leftover silkworm pupae from a cocoon because of its high nutritional value.

In their study, Jaczynski, Park and Matak found that protein can be efficiently isolated from insects using pH-solubility-precipitation, resulting in isolates with high nutritional and functional quality.

Proteins, just like sugar and salt, dissolve in water. However, protein solubility depends on the pH of a solution that the protein is in.

“Depending on the pH of a protein solution, protein solubility can be turned on or off, sort of like a light switch, so that protein can dissolve or precipitate (no solubility),” Jaczynski said.

Precipitation is the opposite of solubility. When protein dissolves in a solution, it visually disappears from that solution, just like sugar or salt, while when protein precipitates, it visually re-appears, according to Jaczynski.

“With insects, our point is to selectively extract those nutrients, like proteins and lipids,” Jaczynski said.

“Grains have been around for ages, and they were totally accepted by all populations,” Jaczynski continued. “Why don’t we use insects with the same kind of model on a high level as a source of nutrients? We have to find a way to extract and isolate high quality nutrients and develop prototypes that will jive well with our taste buds.”

Joined on this study was Emily Brogan, former Animal and Nutritional Sciences master’s student.

Citation: https://doi.org/10.1016/j.lwt.2021.112314

Share on facebook
Share on twitter
Share on print
Share on email

SHOPS & SERVICES

Jess Scott holds her new book, ‘Miss Penelope Thundertoes Changes Her Mind.’ The book is geared for children aged 3 to 8 -- but it’s also for anyone who has a love for pigs.
Member Exclusive

Wesleyan professor pens children’s book, ‘Miss Penelope Thundertoes Changes Her Mind”

BUCKHANNON – Jess Scott, a professor at West Virginia Wesleyan College, has penned a children’s book she hopes will keep kids oinking with fun – but really ‘Miss Penelope Thundertoes Changes Her Mind’ is for swine enthusiasts of all ages. […]

Help us reinvent local journalism and unlock unlimited access to every story, every day. Signing up is easy — just tap the button below!

BUHS Sports

Raising the Jolly Roger With… Evan Coffman

TENNERTON — In continuing to bring you the best sports coverage in Upshur County, the My Buckhannon sports department is pleased to bring you another edition of our weekly exclusive — Raising the Jolly Roger

WVWC Sports

Wesleyan announces 2022 baseball schedule

BUCKHANNON, W.Va.– West Virginia Wesleyan baseball and head coach Lee Bradley released their 2022 schedule this weekend. The ‘Cats are scheduled for 14 home contests at Hank Ellis Field during the 2022 campaign. The Bobcats kick their season off

WVWC Sports

Tolbert scores 19 but Lady ‘Cats fall to D&E, 67-57

ELKINS, W.Va. – The West Virginia Wesleyan (2-10, 1-9) women’s basketball team fell at Davis & Elkins (4-11, 1-9) on Saturday afternoon by a 67-57 score at the McDonnell Center in Elkins, W.Va.. WVWC LeadersCierra Tolbert netted 19

WVWC Sports

‘Cats fall by 11 on the road to Davis & Elkins

ELKINS, W.Va.– The West Virginia Wesleyan (2-16, 1-11) men’s basketball team fell to Davis & Elkins (6-9, 4-7) inside the McDonnell Center on Saturday. Braeden McGrew led the Bobcats with 17 points, but the Senators pulled away in

SHOPS & SERVICES

Cable Broadband

$17 million in broadband funding awarded

CHARLESTON, W.Va. – Gov. Jim Justice today announced the preliminary approval of over $17.4 million in Line Extension Advancement and Development (LEAD) program funds for

Thank you for reading this story. Our sponsors make My Buckhannon possible. Show 'em some love!